sábado, 5 de octubre de 2013

triangulos y cuadrilateros

                                          triángulos y cuadriláteros 

Triángulo

Un triángulo es un polígono de tres lados. Por tanto, tiene tres vértices y tres ángulos.
Nomenclatura:
  • En un triángulo, la letra que se usa para el vértice es mayúscula: A \,\ B,\ C.
  • Las mismas letras mayusculas, con un "sombrero", para nombrar el ángulo:\hat A, \ \hat B, \ \hat C, aunque también son usuales las letras griegas: \alpha,\ \beta,\ \gamma.
  • El nombre de cada lado se expresa con una letra minúscula: a,\ b,\ c; es la letra correspondiente al vértice opuesto al lado. También se puede expresar cada lado con dos letras mayúsculas: BC,\ AC,\ AB, las de los vértices contenidos en ese lado.


Clasificación de los triángulos


Según sus lados

  • Equilátero: Si tiene los tres lados iguales
  • Isósceles: Si tiene dos lados iguales.
  • Escaleno: Si tiene tres lados desiguales.
Triángulo EquiláteroTriángulo IsóscelesTriángulo Escaleno
EquiláteroIsóscelesEscaleno

Según sus ángulos


  • Rectángulo: Si tiene un ángulo recto
  • Obtusángulo: Si tiene un ángulo obtuso
  • Acutángulo: Si tiene tres ángulos agudos
Triángulo RectánguloTriángulo ObtusánguloTriángulo Acutángulo
RectánguloObtusánguloAcutángulo

Construcción de triángulos

Un triángulo, tiene tres lados y tres ángulos. Para construir un triángulo hay que conocer tres de esos datos, siendo al menos uno de ellos un lado:
  • Conocidos los tres lados.
  • Conocidos dos lados y el ángulo comprendido entre ellos.
  • Conocido un lado y sus dos ángulos contiguos.
esta es una imágenes de algunos triángulos
 




acontinuacion podrán observar la construcción de triángulos



    

cuadriláteros


 
Un cuadrilátero es un polígono que tiene cuatro lados. Los cuadriláteros pueden tener distintas formas, pero todos ellos tienen cuatro vértices y dos diagonales, y la suma de sus ángulos internos siempre da como resultado 360º.
 
 

  componentes de un cuadrilátero

 
Los componentes de un cuadrilátero son los siguientes:


Los cuadriláteros se clasifican según el paralelismo de sus lados:
1. Paralelogramos: sus lados opuestos son paralelos
2. Trapecios: dos de sus lados son paralelos; los otros dos, no
3. Trapezoide: los lados no son paralelos


Taxonomía de los cuadriláteros

Cuadrelateros.svg Cuadrilátero Cuadrilátero complejo Cuadrilátero simple Cuadrilátero cóncavo Cuadrilátero convexo Trapecio (geometría) Cuadrilátero cíclico Cuadrilátero tangencial Trapecio isósceles Trapecio rectángulo Trapecio tres lados iguales Cuadrilátero bicentrico Romboide Rectángulo Cuadrado Deltoide Rombo
Acerca de esta imagen
En el gráfico ilustrativo de la taxonomía de los cuadriláteros se pasa de las definiciones más generales a las más específicas siguiendo el sentido de las flechas.
Así se parte de un cuadrilátero definido como un polígono cerrado de cuatro lados, sin más restricciones, para diferenciar los cuadriláteros compuestos de los simples.
En un cuadrilátero complejo, dos de sus lados se cortan. En uno simple los lados no se cruzan.
Los cuadriláteros simples se dividen en:
  1. Cuadrilátero cíclico, si se puede trazar una circunferencia que pase por sus vértices.
  2. Cuadrilátero tangencial, si se puede trazar una circunferencia tangente a cada uno de sus lados.
  3. Trapecios, si tienen dos lados paralelos. Se diferencian:
    1. Romboide, como caso más general de paralelogramo, si los lados son paralelos dos a dos.
    2. Trapecio rectángulo, que tiene un lado perpendicular a sus bases.
    3. Trapecio isósceles, cuyos lados no paralelos son de igual medida. Este trapecio también es cíclico.
A un cuadrilátero que al mismo tiempo sea cíclico y tangencial se le denomina cuadrilátero bicéntrico. El deltoide es tangencial con dos pares de lados iguales.
Un caso particular de trapecio isósceles es cuando la longitud de una de las bases es igual que la de sus lados, por lo cual se configura un trapecio de tres lados iguales.
El rectángulo es un cuadrilátero que simultáneamente cumple las características de:
  • Paralelogramo, al ser paralelos sus lados opuestos.
  • Trapecio rectángulo, porque los lados son perpendiculares a las bases.
  • Trapecio isósceles, por ser de igual longitud los lados que no constituyen las bases.
Del mismo modo se puede verificar que el rombo es un deltoide paralelogramo, pues cumple las características de ambos.
Por último, el cuadrado puede considerarse rombo, rectángulo, con lados iguales y bicéntrico


estas son algunas imágenes de los cuadriláteros





acontinuacion podemos observar como construir estos cuadriláteros
 

No hay comentarios:

Publicar un comentario